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ABSTRACT: 
 
GPS photogrammetry has already helped to improve the accuracy/performance of the conventional aerial triangulation process.  
Directly derived exterior orientation parameters using combined GPS and high-performance IMU systems offer the possibility of 
eliminating conventional aerial triangulation in the long run. Consequently, these changes significantly impact all the steps of the 
data reduction and measurement processes.  However, direct georeferencing method requires additional correction for medium to 
large scale applications. In addition to the existing GPS/INS linear shift-drift correction per strip model, a new GPS/INS error 
correction model is implemented in the Intergraph’s ImageStation Automatic Triangulation (ISAT) product. Our studies have shown 
that for many orientation datasets of frame photos, GPS/INS errors for neighbouring positions and orientations are still highly time-
correlated (even after removing a linear trend) and subject to auto regression of Gauss-Markov type rather than constant linear drift. 
The conducted simulation studies suggest that Wiener weighted constraints for GPS/INS error drift with trend estimation by filtering 
random drift residuals make a better fit than a standard linear shift-drift model for the unified least-squares bundle adjustment 
(Integrated Sensor Orientation) of blocks of frame photos in terms of check-point discrepancies. The purpose of this paper is to 
describe this new GPS/INS correction model and provide some numerical results. 
 
 

1. INTRODUCTION  

A photogrammetric flight with global positioning system (GPS) 
and inertial measurement unit (IMU) on board is a common 
practice today. The direct georeferencing (DGR) method for 
orientating aerial images using the differential-GPS/INS self-
calibrating post-processing solutions for exterior orientations 
(EO) has sufficient accuracy for mapping applications with 
ground sample distance of 1-2 meters and larger. In terms of 
uniformity of distribution of geographic reference information, 
GPS data are usually much better than a typical network of the 
field-surveyed ground control points. However, the DGR 
method requires additional correction for engineering-scale 
applications. There are numerous sources of errors in the 
GPS/INS-derived EO parameters that require correction from a 
network of ground control points, though a much sparser one 
than that needed for a regular photo triangulation method. To 
name a few, constant shift errors are due to datum shift in 
position of differential GPS (DGPS) master station, difference 
in timing between camera mid-exposure and the GPS 
observation time stamp, user errors like that possible in 
Geoid/ellipsoid vertical datum transformations, and IMU 
boresight calibration errors in orientation; drift errors are due to 
the unresolved DGPS cycle slips, ionospheric and tropospheric 
delay errors increasing with distance from DGPS master 
station, and the unmonitored GPS antenna motion with respect 
to the camera body frame suspended in the inertially-stabilized 
mount (Mostafa and  Hutton, 2001). Earth curvature and 
unequal horizontal and vertical map scales impose additional 
distortion when DGR is computed in mapping coordinate 
systems. 
 

1.1 The DLC Concept 

The quality of the exterior orientation data becomes directly 
apparent when it is combined with the imaging system data.  
The mapping process using directly measured exterior 
orientation parameters is different from the traditional one. 
Therefore, the entire process of quality control and quality 
assurance (QA/QC) becomes a process of managing each step 
in the data acquisition and post-mission processing phases to 
achieve a consistent and reliable quality assessment. 
 
A number of QA/QC methods have been designed and 
developed in ISAT to allow quick evaluation of the quality of 
the directly measured EO parameters, camera-calibrated 
parameters, and datum parameters for a particular application 
and scale (Figure 1). 
 

 
 

Figure 1: GPS/INS QC Tools in ISAT (DLC Concept) 
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Detection, Location, and Correction (DLC) is the concept 
behind the direct EO QA/QC process in ISAT. POS 
(GPS/IMU) data, project aerial imagery, and available GCP 
(control/check points) are simultaneously used to efficiently 
perform DLC. By ‘detection’, we mean to automatically detect 
whether or not there is a perfect fit (according to some 
predefined threshold) between the directly derived EO 
parameters, the images, and the available GCP. If there is no 
perfect fit then ‘Location’ is performed, where ISAT tries to 
identify the location and possibly the reason for erroneous EO 
parameters. ‘Correction’ is where the erroneous (inaccurate for 
some reason) EO parameters are corrected (Madani, and 
Mostafa, 2001). 
 
EO Analysis tools and the DGR capability are used to evaluate 
the quality or condition of exterior orientation parameters in a 
project by comparing the given coordinates of control points 
and check points with the intersection of the rays of these 
points as projected on overlapping photo pairs by the EO data 
and by the amount of y-parallax per point and per model (see 
Figures 2 and 3). 
 

 
 

Figure 2: Point Parallax and Intersected Point Discrepancy 
 

 
 

Figure 3: Display of y-parallax for Selected Models 

2. GPS ERROR MODELING 

A common correction method for systematic GPS/INS errors is 
to use piecewise polynomial splines with respect to GPS time. 
In many practical systems, a linear shift-drift model is used. In 
case of a strip of frame photos, usually one line segment per 
strip is employed. However, the contemporary differential-
GPS/INS self-calibrating post-processing solutions do not have 
linear drift in time as a dominant trend neither for position, nor 
for orientation. Instead, these post-processed data have a 
common shift per block plus slow-varying, highly time-
correlated drift components that do not have a general linear 
trend. In this case, a linear shift-drift model becomes too stiff to 
accommodate true GPS/INS errors even with more than one 
segment per strip. The result is that maximal position/attitude 
error may become larger than that in the original GPS/INS 
observation even though RMSE may be reduced, which makes 
the accuracy of ground-to-image transformation less uniform 
across the block (Madani, Shkolnikov, 2005). 
 
There is a need for more advanced, flexible and yet simple 
correction models that improve a DGR corrective adjustment or 
an integrated sensor orientation. In the latter case, residuals on 
the corrected GPS/INS observations must become random to 
satisfy the unified least-squares optimal error distribution 
principle. This work is concentrated on analysis and 
development of shift-invariant GPS/INS drift correction 
models, one example of which is a first-order difference 
equation of the Markov system driven by Gaussian drift noise 
(Mikhail, 1999, Lee et al., 2000, Lee and Bethel, 2001). 
 
Post-processed GPS errors are highly correlated in time. 
Therefore, it is possible to use different waveform models to 
correct for these errors in the least squares adjustment. The 
basic correction equation for each EO parameter, say X-
position, is given by, 
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where cX  is the unknown camera position, GPSX  is the GPS 
position estimate of the camera (taking care of the antenna 
offset, if necessary), ∆X  is the unknown correction of the 
GPS position, and i  is the camera station number in a strip. 
For a corrective bundle adjustment with DGR, the term ∆X  is 
usually a deterministic function of time, like a piecewise linear 
or quadratic spline. This modelling assumption for the 
corrective adjustment with DGR may be sufficient for a smooth 
platform trajectory given at a high sampling rate, like that for 
satellite pushbroom scanners. However, the polynomial models 
are not always flexible enough to satisfy aerial platform 
trajectories (Mikhail, 1999, Lee et al., 2000, Lee and Bethel, 
2001). 
 
For a bundle adjustment of a block of frame photos, Eq. (1) 
becomes a stochastic constraint  
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where residuals { }iv  are assumed Gaussian, random and 

uncorrelated, 0a  and 1a  are shift and drift parameters, it and 



 

0t are time stamps,  iGPSX  are GPS observations, and icX  
are corrected coordinates of the camera positions, respectively. 
Eq. (2) is unified with collinearity and control observation 
equations in the least squares adjustment.  
 
2.1 Gauss-Markov Drift Model 

This model was originally employed for the aerial pushbroom 
scanner corrective bundle adjustment with DGR (see Lee C. 
and et al., 2000, Lee and Bethel, 2001) where the deterministic 
GPS error correction model has been replaced with the 
stochastic GPS error drift model, Gauss-Markov first-order 
autoregressive model. 
 
The idea was to model GPS correction ∆X  drift by the 
following dynamics 
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which has a discrete time form 
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where s,β  are Markov continuous/discrete autocorrelation 

parameters, and input noise sequence { }iv  ( )(tn  in 
continuous case) is assumed Gaussian (zero-mean, known 
standard deviation, and uncorrelated random process). 
Equations of the form (4) define a stochastic constraint between 
adjacent unknown corrections to each GPS position. The partial 
derivatives of collinearity condition equations with respect to 

cX  are equal to that with respect to ∆X , and unknown 

camera positions can be replaced by ∆X  as corresponding 
free parameters of the bundle adjustment due to Eq. (1). In this 
case there is no difference between the corrective bundle 
adjustment with DGR and the unified bundle adjustment with 
additional GPS observation equations. 
 
It is not difficult to show that  
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will be achieved when )1(∆
=

X
a ρ , which is the first 

autocorrelation coefficient for ∆X . The stronger is the 

correlation between successive GPS corrections ∆X , the 
smaller is the standard deviation of input noise that drives the 

GPS error drift model as compared to standard deviation of 

GPS error correction itself
∆Xσ . 

 
It has been reported that the Gauss-Markov first order drift 
model for GPS/INS error correction always gives better 
performance than piecewise polynomial correction models for 
aerial pushbroom platforms (Lee et al., 2000, Lee and Bethel, 
2001). 
One should notice that the optimal coefficient sa −=1  could 
be estimated separately from the main bundle adjustment by 
statistical collocation as the first autocorrelation coefficient for 

∆X  estimated at a given iteration step of the system of 
linearized condition equations. Then at the next step, condition 
equations of the form (4) are written with the fixed parameter s, 
removing the need for any border parameters in the reduced 
normal equation system and leaving it as a banded-type system 
instead of banded-bordered. 
 
2.2 Wiener Drift Model 

While successive GPS corrections ∆X  are highly correlated 
for the pushbroom line-frames, they are far less correlated for 
successive samples of frame photos. For many practical cases, 
GPS error drift has a purely random drift model of the type 
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where (7) could describe the relative change in the neighboring 
GPS corrections without extra parameters. The continuous-time 
equivalent of Eq. (7) defines a Wiener random process 
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where )(tn  should be a model of a zero-centered Gaussian 

white noise. In a case when { }iv  do have remaining 
correlation in time, filtering by statistical collocation to the 
main bundle adjustment may refine the model (7) 
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where { }id  is the filtered trend surface (estimated by 

statistical collocation on the previous iteration step), and { }iv  
are now truly random uncorrelated drift residuals. 

Finite-impulse-response (FIR) filter for trend estimation is 
computed by autocovariance method where the mean-removed 
autocorrelation of the signal (trend { }id ) component in { }iv  

is modeled by equation ( ) ,...2,1,0,exp 2 =⋅−= nnpy , 

where parameter p is estimated using nonlinear least-squares fit 
of one-sided autocorrelation )(nvρ  of zero-centered sequence 

{ }iv  into a set of conditions 
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Thus, this simple method of GPS error correction with random 
drift model followed by collocation of FIR filtering will be 
adopted for testing in our case study against linear shift-drift 
model and will be called “dynamic drift collocation” method. 
 
 
3. GPS ERROR ANALYSIS 

This study is restricted to GPS error investigation as a basis for 
deriving and justifying GPS/INS correction models. In this 
section, true GPS error estimation by photogrammetric method 
will be performed at the sampling distances of exposure station 
positions of a strongly connected block of frame photos with a 
sufficiently redundant network of ground control points and 
dense population of cross-strip tie points. If there are no 
systematic errors in image observations and ground control 
points, then there is a good opportunity to have camera position 
estimates without systematic errors especially that correlated in 
flight time along a strip. Therefore, the estimate of a waveform 
of ideal GPS correction may be obtained as a difference 
between the triangulated camera positions and the GPS-
estimated positions. 
 
3.1 Test Data Description 

The 1:10,000 photo scale data of the Fredrikstad, Norway test 
field, flown by Fotonor AS using a wide angle Leica RC30 
camera equipped by an Ashtech GPS receiver and the Applanix 
POS/DG system, was used in this study (for detail, see Heipke, 
et al, 2000). This test field is about 5 x 6 km2 and has 51 well 
distributed signalized control points with the accuracy of about 
0.01 m. The control point coordinates, raw and refined direct 
EO parameters were given in UTM/EuroRef80 coordinate 
system with ellipsoidal heights. This data set is comprised of 
five parallel strips and two cross strips and 13 control points 
(Figure 4).  
 
Applanix POSEO data, uncorrected and corrected for boresight, 
computed in the phase one of the OEEPE study, along with the 
provided control points coordinates and the image coordinates 
of all 85 photos were used to investigate the different GPS/INS 
correction models by the ISAT bundle block adjustment 
program and its DLC capability for analyzing the quality of the 
derived EO parameters (Madani, Dörstel, Zeitler and Tang, 
2001).  
 
3.2 Numerical Results 

Several bundle adjustments were performed on this block using 
control points, Given EO, and with different GPS/INS 
correction models applied. The first bundle adjustment used 
only control points as weighted observations. Relative bundle 
adjustment of this test block revealed no visible systematic 
errors in image residuals and no visible systematic errors in 
ground control/check residuals in absolute block adjustment 
(Figure 5).  Estimated EO positions are within 7 to 11 cm.  This 

set of EO parameters is used as a reference for other error 
estimation adjustments. 

 
 

Figure 4: Calibration Flight in Southern Norway 
 

 
 

Figure 5: Absolute Bundle Adjustment Using Control Points 
 
All adjusted object points from this reference solution were 
used as check points for the second bundle adjustment using 
control points and given GPS/INS data as weighted 
observations (Figure 6). 
 
Computed camera positions are compared with the 
corresponding GPS values. Derived GPS errors are up to 60 
cm.  One can clearly see that RMS values of the check points in 
Z are much higher than the estimated precision in Z.  This is 
due to the systematic distortion of the GPS observations.  
Analyzing these two bundle adjustments (Figures 5 and 6), one 
can conclude that GPS errors in Figure 6 are well above the 
estimated noise level due to the photogrammetric method 
(compare Std Devs and RMS on control/check points and EO 
position Std Devs). Thus, if the fit into this control network is 
considered as a reference one, then the GPS correction model 
for the additional GPS observations to be included into 
adjustment must absorb waveforms given in Figure 7 in order 
to produce a set of EO positions maximally consistent with the 



 

block geometry enforced by this dense control network. One 
can clearly see that a linear shift-drift correction is a fair 
candidate only for X-correction waveform, while it is too rigid 
for the other two (Madani and Shkolnikov, 2005).  
 

 
 
Figure 6: Absolute Bundle Adjustment Using Control Points 
and GPS/INS data 
 

 
 

Figure 7: Estimated GPS Errors  
 
The problem with a linear shift-drift correction here is that 
there are too many given GPS positions as compared to the 
number of control points in a typical adjustment; they tend to 
impose an extra residual load on controls accounting for their 
own errors in the unified least squares adjustment, which 
becomes invalid since it assumes uncorrelated errors in given 
EO while they indeed are highly correlated along the strip. 
 
A difference between the reference camera positions and the 
GPS-estimated positions for one selected strip is shown in 
Figure 7. One can observe that GPS errors are highly time-
correlated, and correction waveform bandwidth is much lower 
than the Nyquist limit set by sampling at exposure points. 
Normalized autocorrelations for waveforms are given in Figure 
8. 
 
GPS errors would be still highly correlated after linear trend 
removal even with sparse sampling at exposure stations. 
Derived GPS error in Z has a significantly parabolic trend.  
Therefore, the linear correction model cannot express this 
behaviour (Figure 7).  More flexible correction models that 

account for higher frequency changes in the EO parameters can 
be obtained. 

 
 

Figure 8: Normalized Autocorrelations of GPS Errors 
 

GPS Error Drift (the first difference of GPS error) has much 
more random error distribution along a strip than GPS Error 
itself even with linear trend removed (Figure 9). 
 

 
 

Figure 9: First Differences of GPS Errors 
 

One can identify that the GPS error drift is correlated within a 
window of ±5 photos. Thus, the idea to impose stochastic 
constraints on GPS error drift has two obvious merits: first, a 
drift constraint controls relative change in EO position from 
photo to photo while absolute geo-datum will be controlled 
entirely by ground control points (i.e., this is a shift-invariant 
constraint); second, GPS error drift model driven by random 
noise is more flexible than a piecewise constant drift model 
(linear shift-drift) where random noise is attributed to shift 
residuals. 
 
Figures 10 and 11 present general statistics on bundle 
adjustment performed with linear shift-drift GPS correction 
model (Figure 8) and dynamic drift collocation model (Figure 
11). One can observe that RMS in Z coordinate on check points 
has dropped 10 fold, which was expected since linear 
correction is a poor model for Z-error in GPS (Figure 7), while 
dynamic drift was able to accommodate this trend completely. 

 

 
 

Figure 10: Bundle Adjustment with GPS Linear Shift/Drift  



 

 
 

Figure 11: Bundle Adjustment with GPS Dynamic Drift 
 
 

4. CONCLUSIONS 

A simple method of GPS/INS error correction is developed that 
does not require any additional parameters in the bundle 
adjustment solution, which contribute to the border of 
otherwise banded-type matrix of the reduced normal equation 
system of the iterative least squares adjustment for a block of 
frame photos. The proposed random drift model (Wiener drift 
model) is placing a stochastic constraint on the relative change 
in GPS/INS correction (weighing relative distances between 
exposure points rather than absolute positions of each 
exposure), hence modeling the correction in a shift-invariant 
mode with drift dynamics given by a Wiener process. Absolute 
datum in this case is controlled entirely by ground control 
points. The trend in random drift is estimated by collocation of 
autocovariance finite-impulse-response filter. The proposed 
GPS/INS correction model is proven to be more flexible than a 
standard linear shift-drift model in accommodating higher 
frequency changes of GPS/INS error. Experiments with GPS 
correction by the proposed dynamic drift model have been 
performed on a modified version of ZI Imaging ISAT/PhotoT 
software, which is going to adopt this new method of GPS/INS 
correction as an option in the future commercial releases of this 
software. 
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